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Abstract. It has been established theoretically and experimentally that X-shaped localized waves
have peaks that travel at superluminal speeds. A study of the excitation of such pulses has shown
that their peaks undergo a delayed generation before they are launched. Consequently, these peaks
travel at superluminal speeds for a finite distance beyond which they propagate at the speed of
light. We demonstrate that this local superluminal propagation does not constitute a violation of
the theory of special relativity in a global sense. The use of this local superluminality in signalling
is investigated and implications pertaining to causality are discussed.

1. Introduction

In recent experimental and theoretical investigations, it has been shown that X-shaped localized
waves (or pulsed Bessel beams) have peaks travelling at superluminal speeds [1–8]. An
example of such wave solutions is the focused X-wave that has been deduced using the
superluminal boost representation [6]. Explicitly, the focused X-wave solution has the form

�FXW(ρ, z, t) = 1√
ρ2 + (a1 + iγ (z − vt))2

e−κ0

√
ρ2+(a1+iγ (z−vt))2

e+iκ0γ ((v/c)z−ct) (1)

where γ = 1/
√

(v/c)2 − 1 > 0 and (v/c) > 1. Here, κ0 and a1 are constants that determine
the shape of the pulse and its frequency bandwidth. In the limit κ0 → 0, the FXW reduces
to the X-wave solution introduced by Lu and Greenleaf [1]. The zeroth-order X-wave has the
following explicit form:

�XW(ρ, z, t) = 1√
ρ2 + (a1 + iγ (z − vt))2

. (2)

The wave solutions given in equations (1) and (2) have peaks that move with superluminal
velocities. This property has invoked claims to the possible breakdown of the theory of
relativity [9–11]. Before one can judge such serious allegations, a better understanding of
the propagation and generation of these superluminal wave solutions is necessary. A careful
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study of various configurations that can produce X-shaped pulses similar to those given in
equations (1) and (2) has been provided in [12]. It has been shown that X-shaped localized
waves have peaks that acquire superluminal speeds after a generation delay at the aperture
plane. The subsequent superluminal propagation is observed over a finite range beyond which
the speed of the pulse asymptotically approaches the speed of light. Consequently, an X-shaped
pulse acquires local superluminal speeds, while its peak always falls behind an ordinary wave
travelling at the speed of light and undergoing no delayed generation. As such, X-shaped
localized waves cannot be used in superluminal signalling in a global sense. Instead, they
acquire superluminal speeds locally over a finite range. We believe that it is timely to study the
effect of this local superluminality on relativistic causality, especially after the generation of
superluminal X-waves and Bessel X-pulses using optical [4, 13] and microwave sources [8].

The plan of this work is to show in section 2 that the superluminal speed of the peak of an
X-shaped pulse is local in character and does not allow the global superluminal transmission
of signals. We also discuss a scheme that may be used for local superluminal signalling. In
section 3, we summarize Bohm’s relativistic argument against superluminal signalling [14]. We
then specify the constraints that prevent signalling to the past from happening. Our concluding
remarks are provided in section 4.

2. Local versus global superluminality

The results of [12] indicate that local transmission of superluminal X-shaped pulses is possible.
Such a prospect leads to speculations concerning using X-shaped pulses for superluminal
signalling. This is a crucial issue, especially when considering ultra-short pulses exhibiting
few oscillations. In such a case, the propagating pulse is very narrow and the superluminal
propagation of the peak of the pulse is manifest (cf figures 7 and 11 in [12]). We have already
demonstrated that X-shaped pulses generated using different schemes exhibit a ‘delayed
generation’ followed by a superluminal ‘catching up’ [12]. One can, thus, represent the
propagation of ultra-short X-shaped pulses by the Minkowski diagrams shown in figure 1. This
figure shows three possible courses of action of the generated X-shaped pulses. These three
schemes do not violate the special theory of relativity. The diagram displayed in figure 1(a)
depicts a pulse generated after a time delay T0; henceforth, it propagates at a superluminal
velocity that asymptotically approaches c. At the finite distance L, the deviation of the velocity
of the pulse from c is negligible. The distance L can thus be defined as the distance at which
the deviation of the speed of the pulse from c is not measurable. The diagram, shown in
figure 1(a), is a schematic representation of the propagation of an X-shaped pulse generated

Figure 1. Minkowski diagrams representing various situations depicting ‘delayed generation’
followed by superluminal propagation.
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Figure 2. Proposed scheme for superluminal signalling using a shutter operator. Observer �1
uses shutter (S) to transmit information using a locally superluminal pulse train. Observer �2
receives the signal at M1 and responds with superluminal signal that reaches �1 at R1. The signals
transmitted between �1 and �2 are received at R2 and M2, respectively.

using an annular slit or a refractive axicon [12]. For the first source, the delay is due to the
time taken by the fields generated at the annulus to reach its axis where they interfere, hence,
forming the X-shaped pulse. On the other hand, the delay associated with a refractive axicon
is due to the time consumed by the pulse as it goes through the material of the axicon. The
diagram, shown in figure 1(b), represents the propagation of a pulse generated by a diffractive
axicon. The initial propagation of the pulse is subluminal. It then becomes superluminal for
the remaining part of the distance L. Finally, figure 1(c) displays an abstract situation where a
delayed generation of the pulse is followed by propagation at a constant superluminal velocity.
Such propagation is upheld for a finite range L beyond which the pulse dissipates very quickly
or the pulse becomes indistinguishable from the surrounding background field. This abstract
representation holds a close resemblance to the more physical ones displayed in figures 1(a)
and (b), and is easier to handle graphically when issues pertaining to the question of causality
are addressed. Furthermore, this abstract representation can serve as a general model for
any scenario (not necessarily that of the X-shaped pulses considered in [12]) in which local
superluminality is achieved due to ‘delayed generation’ followed by some ‘catching up’ over
a finite distance.

In all three situations illustrated in figure 1, the global transmission of the pulses occurs
at velocities smaller than c. Therefore, the propagation of these pulses is consistent with
the general framework of the theory of special relativity. Locally, however, one can observe
superluminal transmission of ultra-short pulses. Evidently, one should wonder whether such
local transmissions can be used for transmitting superluminal signals. A contraption that could
make use of this local superluminal transmission is a gate or a shutter placed at an intermediate
position between the source and a receiver. Assume that the source �0 is transmitting a
wavetrain of pulses separated at known time intervals. Individual pulses within such a wavetrain
are stopped/passed at will by an operator of the shutter �1, as shown schematically in figure 2.
The action of the operator (signal) could be thus transmitted at superluminal speed to the
receiver �2. There are several points that have to be checked before such apparently simple



7258 A M Shaarawi and I M Besieris

system is deemed feasible. An important factor that can affect the performance of the suggested
system is that the movement of the shutter and its positioning in front of the source may disturb
the propagation of the transmitted pulses. This can be especially critical since the superluminal
propagation is more prominent in the near-field range. If the shutter were placed further away
from the source, the observable deviation from the speed of light would be minimal. On the
other hand, placing the shutter too close to the source could affect the delicate coherence of
the wave fields radiated from different sections of the source plane. The interference of these
wave fields gives rise to the superluminal X-shaped pulses. The shutter might, thus, affect their
coherence to the extent of destroying the pulses altogether, or dissolving their superluminal
character. It must be remembered, however, that any argument disclaiming the possibility of
using a shutter for transmitting superluminal signals is speculative until an accurate simulation
of the action of the shutter is undertaken. Alternatively, an experimental test of this procedure
could be a worthwhile endeavour.

The preceding discussion implies that the use of the local superluminal transmission of
the X-shaped pulses depends on the possibility of having a shutter device that would not
destroy the transmitted pulses or their superluminal character. Until such a crucial issue is
resolved, the question of causality remains unsettled. In particular, can one signal to the
past if the aforementioned scheme were feasible? Can we reach extreme situations of having
‘delayed generation’ at cT0 = L, such that the subsequent local transmission of the pulses
is instantaneous? Will the need for preserving causality set any limits on the velocity of the
local transmission of pulses? Before discussing any possible violation of causality, one should
recall that the theory of relativity is based upon two principles, namely, the constancy of the
speed of light and the invariance of the laws of physics in all inertial frames. Superluminal
wave propagation has been dismissed, within the framework of special relativity, because we
can use it to signal to our own past. Therefore, superluminal signalling violates causality,
while it does not per se contradict the assertions of special relativity, or, as claimed, ‘implies
the breakdown of the principle of relativity’. In fact, there are attempts to generalize the theory
of special relativity in a consistent way by allowing for both superluminal and subluminal
speeds without violating causality [15–20]. Incidentally, in [15], it has been predicted that the
simplest superluminal object is a rigidly moving X-shaped wave. Within the framework of
‘extended relativity’, it has been argued that single tachyon superluminal transmission does
not violate causality [18–20]. The preservation of causality in such an approach depends
on the Feynman–Stückerlberg ‘switching procedure’, which involves the switching of the
observation of tachyons and antitachyons depending on the frame of reference of the observer.
For an optical signal, ‘extended relativity’ anticipates that antiparticles of polarized photons
are photons having opposite helicities. In this work, we choose to limit our analysis to the
framework of ordinary special relativity. We demonstrate that optical X-shaped pulses having
peaks that travel at superluminal speeds for a finite distance do not violate special relativity.
Furthermore, we show that the use of such pulses for superluminal signalling allows us to
communicate with our past. However, this can only happen under very stringent conditions.

3. Local superluminality and relativistic causality

Ambiguity in the order of time arises in special relativity when two events are outside each
other’s lightcones. Essentially, different observers will not agree on which one of the two
events occurs earlier [14]. This causes severe difficulties with causality, as one observer can
note that one event is the cause of the second, while another observer can reverse their order.
This ambiguity is usually removed if no influence can be transmitted at a velocity larger than
c. In the case where such a condition is not imposed, it becomes possible to signal to the
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Figure 3. Minkowski diagram of Bohm’s
construction illustrating possible transfer of
information to the past if superluminal signalling
is available.

past. This point has been candidly discussed in [14]. Bohm’s argument, illustrated in figure 3,
is based on the possibility that observers �1 and �2 would come into physical contact with
observers �′

1 and �′
2, respectively. It is assumed that during such a contact information can be

transferred between the observers without delay. Relative to the frame of reference of �1 and
�2, the other two observers �′

1 and �′
2 are moving at a constant speed v < c. The observer

�′
2 (represented by the worldline A′B ′) gets in contact with �2 (represented by the worldline

AB) at the point M . During this contact, a piece of information is passed from �2 to �′
2,

which is subsequently transmitted at a superluminal speed to observer �′
1. If �′

1 receives
this information at point O, or at any time prior to reaching this point, he can transfer this
information to observer �1. The latter can send back a superluminal signal to �2 reaching
him at M ′. Evidently, ct (M ′) < ct (M) and the described scheme enables observer �2 to send
specific information to his own past. As such, any superluminal signal should be ruled out in
order to preserve causality.

It is of interest to examine the above argument against the possibility of having signals
undergoing local superluminal transmissions (cf figures 1 and 2). As shown in figure 4,
observer �1 is assumed to be able to transmit a local superluminal signal that has a ‘delayed
generation’ time cT0 = αL and a finite signal duration cτ . An identical transmitter is also
used by observer �′

2 who is moving at relative speed v < c. Both �′
2 and �1 are shutter

operators that are assumed to be very close to the generators of trains of pulses of the type
illustrated in figures 1 and 2. They are chosen to be as close as possible to the generators
because for such positions the likelihood of violating causality is maximized. Now following
Bohm’s argument, we assume that upon contact between �2 and �′

2 a piece of information is
passed from the former to the latter. Such information is immediately transmitted by �′

2 to �′
1.

This signal should be received entirely by �′
1 before he gets in contact with �1. When the two

get in contact with each other, the piece of information is passed from �′
1 to �1. The latter

transmits the information back to �2. From figure 4, one may conclude that in order to preserve
causality, the transmission from �1 to �2 must end before �′

2 gets in contact with �2 (after
that contact �′

2 starts his transmission to �′
1). This condition implies that ct (E1) < ct (E2).

Alternatively, one can conjecture that causality necessitates that the slope (S ′) of the signal
from �′

2 to �′
1 should be smaller than the slope (S) of the signal from �2 to �1. The two

conditions ct (E1) < ct (E2) and S ′ < S are not equivalent; however, they lead to qualitatively
similar results. One should note that although the first condition relates to realistic situations,
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Figure 4. Bohm’s construction examined for the case of local superluminal signalling by pulses
undergoing ‘delayed generation’ followed by superluminal ‘catching up’.

the second one is more severe. We choose to examine the second condition in order to illustrate
certain points of interest. Toward such a goal, we need to evaluate the slopes S and S ′. From
figure 4, it is straightforward to show that

S = (1 − α). (3)

To determine S ′, we calculate the coordinates of the points P1, P2 and P3. This is done
by evaluating the intersection between z = (v/c)ct and (ct)2 = L2 + z2, which yields
P1 = (βγL, γL). Here, β = (v/c) and γ = 1/

√
1 − β2. The point P2 connects

to P1 through a straight line of slope β; accordingly, one can show that ct2 = z2 =
L

√
(1 + β)/(1 − β). The length P1P3 represents the period (1 − α)L transformed to the

primed frame. After some manipulation, we obtain z3 = L
√

(1 + β)/1 − β − Lβγ (1 − α)

and ct3 = L
√

(1 + β)/1 − β − Lγ (1 − α). Thus, the slope of P1P3 is given by

S ′ = β − (1 − α)

1 − β(1 − α)
. (4)

From equations (3) and (4), one can conclude that causality necessitates that

(1 − α) >
β − (1 − α)

1 − β(1 − α)
(5)

or

f (α, β) = β + β(1 − α)2 − 2(1 − α) < 0. (6)

Figure 5 shows a surface plot of the positive part of the function f (α, β) for different α and
β values. The negative portion of f (α, β) has been equated to zero in order to bring to light the
range of α and β values for which the condition in equation (6) is violated. It is clear from the
figure that causality would be violated for α and β values close to unity. One can, then, argue
that local superluminal transmission of signals is impossible to achieve. This means that in
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Figure 5. Surface plot showing ranges
of α and β for which causality would
be violated. Negative f (α, β) amplitudes,
which correspond to α and β values that do
not violate causality, are not plotted. Instead,
such amplitudes are set to zero.

order to preserve causality, procedures similar to that illustrated in figure 2 should be ruled out.
In particular, the shutter scheme is probably deemed to fail due to one of the reasons discussed
in earlier paragraphs. Although ruling out local superluminal signalling is a viable option, one
can argue that figure 5 demonstrates that communication with the past can only occur under
extremely stringent conditions. It is clear from the figure that one could communicate with
one’s own past only when α or β approach unity. Either the primed and unprimed observers
are moving at a relative velocity very close to c or that the ‘delayed generation’ takes a long
time so that the following superluminal transmission is almost instantaneous. Both situations
are very difficult to achieve physically. Thus, one may argue that local superluminal signalling
is possible but is extremely difficult to use to communicate with the past.

4. Concluding remarks

Traditionally, superluminal signalling has been ruled out because, within the framework of
special relativity, it would allow us to send information to the past. Since communication
with the past has not been observed, then either special relativity is incorrect or superluminal
signalling has to be dismissed. This work is concerned with the propagation of pulses that
are locally superluminal, while entailing no violation of special relativity in a global sense.
Examples of such pulses are pulsed Bessel beams investigated in [12]. In this paper, we
have attempted to address the question of whether local superluminal pulses could be used
for signalling without violating relativistic causality. We have described a scheme for local
superluminal signalling that uses a shutter placed between a source of a train of pulsed Bessel
beams and a receiver. Before accepting the validity of such scheme, we stress that the proposed
shutter scheme should be tested. This could be done either by carrying out a comprehensive
theoretical study of the effect of the shutter on the behaviour of the transmitted pulses, or by
examining the scheme experimentally. In particular, one has to make sure that the action of
the shutter will not destroy the pulses or their superluminality. This has not been done in
this work. Instead, we considered straightaway the question of causality. It has been shown
that if the proposed shutter scheme were feasible, the resulting superluminal signalling would
entail a possible violation of causality, i.e. the shutter scheme would allow signalling to the
past. However, we have shown that this could happen only if we used a source having a long
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‘delayed generation’ period followed by almost instantaneous signalling, or by transferring
information between two observers moving at relative velocities close to that of light. These
situations are almost impossible to achieve. Consequently, one may use this result to provide
a practical explanation for the reasons why signalling to the past has not been achieved. This
line of reasoning should be contrasted with the ad hoc ruling out of superluminal signalling
usually adopted to save causality. After all, communication to the past might turn out to be
highly improbable instead of being impossible.

There have been recent reports on superluminal transmission of pulses by traversing
undersized sections of waveguides, penetrating thin air gaps under conditions of frustrated
total internal reflection and photonic-tunnelling through dielectric mirrors [21–31]. In these
situations, the traversal time associated with the transmission of the peak of the pulse through
the barrier region saturates at a constant value as the thickness of the barrier increases. This
causes the speed of the pulse tunnelling through the barrier to appear to be superluminal. Akin
to the case of pulsed Bessel beams, the superluminal propagation of tunnelling pulses takes
place over finite distances. We are, thus, faced by another example of local superluminal
transmission. It should be of interest to examine whether such tunnelling waves obey special
relativity in a global sense. Following a similar analysis to the one adopted in this paper, we
should be able to consider the effect of the use of tunnelling signals on relativistic causality.
Furthermore, we can establish the type of constraints that would make communication to
the past highly improbable. Already practical limitations to superluminal signalling using
evanescent or tunnelling wavefields have been debated in the literature. Notable among these
limitations are the effects of the finiteness of the bandwidths of the tunnelling pulses and
the effects of simultaneously transmitting evanescent and non-evanescent field components
[27, 29].
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